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1 Introduction

This tutorial introduces Antlr, which is short for another tool for language recognition. Antlr
[PQ95] is a scanner and parser generator. There are other tools offering similar functionality, for
example Lex [LS75] generates scanners and Yacc [Joh75] generates parsers. Lex and Yacc, or
their modern variants Flex [Nic93] and Bison [DS90], are often used in conjunction. The book
by Levine, Mason, and Brown [LMB92] shows Lex and Yacc working together. In contrast to Lex
and Yacc, which can only be used for C and C++ programs, Antlr works with a number of different
languages. In particular, Antlr works with Java. There is even an Eclipse [Ecl03] plugin for
Antlr available at http://antlreclipse.sourceforge.net/. Antlr itself is available from its
homepage http://www.antlr.org. Antlr creates top-down parsers, also known as LL(k)-parsers
[ASU86]. In contrast, Yacc generates bottom-up parsers, technically known as LALR(1)-parsers.
While bottom-up parsers can be more powerful than top-down parsers, the latter are, in general,
easier to understand and to maintain.

Antlr is a complex tool offering many features. Our intent is not to introduce all of them.
Instead, we just show how simple parsers can be readily build with Antlr. Towards this goal, the
next section shows how a simple scanner can be developed with Antlr. We proceed in Section
3 to develop a simple parser for arithmetical expressions. This parser will do nothing more than
regognize an arithmetical expression. In Section 5 we refine this parser to actually do something
with these expressions: For every arithmetical expression parsed the parser will construct a Java
object representing this expression. To make this example interesting we show how this expression
can then be used to differentiate arithmetical expressions symbolically.

2 Implementing a Simple Scanner

In this section we develop a scanner that can extract one line comments from Java programs,
i.e. the scanner will extract all text from a file that starts with two slashes “//” and reaches to
the end of the line. Figure 1 on page 2 shows the Antlr grammar file comments.g specifiying the
scanner. All Antlr keywords have been underlined. We discuss this grammar file line by line.
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1 class CommentsLexer extends Lexer;
2

3 options {
4 k = 2;
5 charVocabulary = ’\u0000’..’\u00FF’;
6 }
7

8 COMMENT : "//" (~’\n’)* ;
9

10 REST : . ;

Figure 1: A scanner extracting one line comments.

1. Line 1 specifies that this file declares a scanner named CommentsLexer. This line tells Antlr
that its task is to generate a Java file CommentsLexer.java defining the class CommentsLexer
which will contain a scanner. Here a scanner is an object that has, among others, the methods

nextToken()

which reads the next available token from the input stream.

2. Line 3 – 6 contains the options section. We have used two options:

(a) The first option “k = 2” specifies that the scanner uses a lookahead of two characters.
We will discuss the topic of lookahead later.

(b) The keyword charVocabulary defines the set of characters that our scanner under-
stands. The default vocabulary consists of just the Ascii characters. In order to be
able to process German umlauts we have extended the vocabulary to contain all unicode
characters representable by one byte.

3. Line 8 contains the first of two grammar rules. The first rule is named COMMENT. The body
of the rule is the text to the right of the colon “:”. This definition states that a comment
should be any text beginning with the character pair “//” and followed by any number
of characters that are different from the newline character. Here, ’\n’ denotes the newline
character. The character “~” serves as negation operator, so that the string “~’\n’” denotes
any character different from the newline character. Since we want to admit any number of
non-newline characters, we have enclosed this string in parentheses, followed by a star, so
that “(~’\n’)*” specifies any number of non-newline characters.

Note the space character between the first string “"//"” and the second string “(~’\n’)*”.
In Antlr, white space has no significance, so this space does not influence the interpre-
tation of the rule. Therefore, whitespace can be used to format rules in order to increase
their readability. This behaviour is different from Lex and can cause confusion for users
accustomed to Lex.

4. Line 10 contains the second rule. The name of this rule is Rest. Its body is the string “.”.
It matches any single character.

If the specification shown in Figure 1 is saved in a file comments.g, we can construct a lexer by
issueing the command

java antlr.Tool comments.g

This call generates the following files:

1. CommentsLexer.java implements the scanner.
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2. CommentsLexerTokenTypes.java defines the token types. These are integers, representing
the different types of tokens that the scanner recognizes. In this case, the file looks as follows:

1 public interface CommentsLexerTokenTypes {
2 int EOF = 1;
3 int NULL_TREE_LOOKAHEAD = 3;
4 int COMMENT = 4;
5 int REST = 5;
6 }

We can ignore the definition of NULL TREE LOOKAHEAD. The other token types should be
obvious: EOF signals end of file and the token types COMMENT and REST correspond to the
lexical rules with the same name.

3. CommentsLexerTokenTypes.txt contains more or less the same information as the file
CommentsLexerTokenTypes.java. The file looks as follows:

1 // $ANTLR : comments.g -> CommentsLexerTokenTypes.txt$
2 CommentsLexer // output token vocab name
3 COMMENT=4
4 REST=5

Next, we need a driver for our scanner. Figure 2 on page 4 shows the implementation of such a
simple driver.

1. Line 1 imports everything from the package antlr, in particular the definition of the class
Token.

2. Line 5 creates a lexer by feeding an InputStream into the constructor CommentsLexer.

3. Line 8 reads a token.

4. Line 9 checks the type of this token. If the token is of type COMMENT, then line 10 prints the
token using the method getText(). This method returns the string that was matched by
the corresponding rule.

5. Line 8 to 10 are repeated until an end-of-file token is encountered.

3 A Parser for Arithmetic Expressions

Our next example deals with arithmetic expressions. We build a parser recognizing arithmetical
expressions built from constants and variables using the operator symbols “+”, “-”, “*”, and “/”.
Furthermore, the function symbols “exp” and “ln” can be used in arithmetical expressions.

We start our construction with the scanner. Figure 3 on page 4 shows its specification.

1. Lines 3 to 8 define rules for recognizing operator symbols and parentheses.

2. Line 10 contains the rule for recognizing identifiers, i.e. variables. Its body states that an
identifier starts with a letter and is followed by any number of letters and digits. In Antlr,
the operator “|” is used to denote disjunctions. Therefore, the expression

LETTER | DIGIT

denotes any character that is either a letter or a digit.
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1 import antlr.*;
2

3 public class Comments {
4 public static void main(String args[]) throws Exception {
5 CommentsLexer lexer = new CommentsLexer(System.in);
6 Token token;
7 do {
8 token = lexer.nextToken();
9 if (token.getType() == CommentsLexerTokenTypes.COMMENT) {

10 System.out.println(token.getText());
11 }
12 } while (token.getType() != CommentsLexerTokenTypes.EOF);
13 }
14 }

Figure 2: A driver for the scanner.

1 class ExpressionLexer extends Lexer;
2

3 LPAREN : ’(’;
4 RPAREN : ’)’;
5 PLUS : ’+’;
6 MINUS : ’-’;
7 STAR : ’*’;
8 SLASH : ’/’;
9

10 IDENTIFIER : LETTER (LETTER | DIGIT)* ;
11

12 DOUBLE : (DIGIT)+ (’.’ (DIGIT)+)? ;
13

14 protected DIGIT : ’0’..’9’ ;
15 protected LETTER : ’a’..’z’ ;
16

17 WS :
18 ( ’ ’
19 | ’\t’
20 | ’\r’ ’\n’
21 | ’\n’
22 ) { $setType(Token.SKIP); }
23 ;

Figure 3: A simple scanner for arithmetical expressions.

3. Line 12 specifies the rule for recognizing floating point numbers. According to this rule,
these consist of a positive number of digits, followed by an optional fractional part which
starts with a dot followed by a positive number of digits. This definition shows two Antlr
operators:

(a) For an expression e, the expression (e)+ denotes a positive number of es.

(b) For an expression e, the expression (e)? denotes an optional occurrence of e, so either
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one occurrence or no occurrence.

Note also that the dot occurring in this rule must be enclosed in single quotes since otherwise
it would be interpreted as a wildcard denoting an arbitrary character.

4. Line 14 shows the definition of digits, using the range operator “..”. In Lex, this range
would have been denoted as “[0-9]”. The name of the rule is preceded by the keyword
“protected”. This keyword specifies that the token DIGIT is used only locally. In our
example, DIGIT is used in the definition of DOUBLE. Since DIGIT is declared as protected,
the scanner will never return a token of type DIGIT. Rather, DIGITs will be joined to make
DOUBLEs.

5. Line 15 defines letters.

6. The rule defining white space in lines 17 – 23 has a semantic action, given by the program
text that is enclosed in curly braces. In this case,

{ $setType(Token.SKIP); }
sets the token type to SKIP. This is a dummy type, which is never returned, but just SKIPped.

1 class ExpressionParser extends Parser;
2

3 expr : product ( "+" product | "-" product )* ;
4

5 product : factor ( "*" factor | "/" factor )* ;
6

7 factor : "(" expr ")"
8 | "exp" "(" expr ")"
9 | "ln" "(" expr ")"

10 | DOUBLE
11 | IDENTIFIER
12 ;

Figure 4: A simple parser

We proceed to specify the parser for arithmetical expressions. Figure 4 on page 5 shows the
definition of a suitable solution.

1. The keywords “extends Parser” in Line 1 specifies that a parser, rather than a scanner is
defined.

Next, there are three rules defining the nonterminals expr, product, and factor.

2. Line 3 defines an expression as a product followed by any number of products preceded by
one of the operators “+” or “-”.

3. Line 5 specifies a product as a factor followed by any number of factors preceded by one of
the operators “*” or “/”.

4. Line 7 specifies a factor as one of the following:

(a) An opening parenthesis “(”, followed by an expression, followed by a closing parenthesis
“)”.

(b) The string “exp”, followed by an opening parenthesis “(”, followed by an expression,
followed by a closing parenthesis “)”.
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(c) The string “ln”, followed by an opening parenthesis “(”, followed by an expression,
followed by a closing parenthesis “)”.

(d) A token DOUBLE denoting a floating point number.

(e) A token IDENTIFIER denoting a variable.
We know that the strings DOUBLE and IDENTIFIER refer to tokens and not to non-
terminals because the names of tokens are made up from uppercase letters, while the
names of non-terminals consist solely of lowercase letters.

5. Looking back at the scanner in Figure 3 we notice that there are no lexical rules to recognize
the strings “exp” or “ln”. Since these strings are longer than one character, the parser
automatically generates rules for these tokens. Of course, it would be nice if Antlr could
also generate lexical rules for one character tokens. It remains one of the mysteries of Antlr
that this convenience is not offered.

1 public class ArithmeticalExpression {
2 public static void main(String args[]) throws Exception {
3 ExpressionLexer lexer = new ExpressionLexer(System.in);
4 ExpressionParser parser = new ExpressionParser(lexer);
5 parser.expr();
6 }
7 }

Figure 5: A driver for the parser recognizing arithmetical expressions.

Finally, Figure 5 on page 6 shows a driver that can be used to test the parser. If we put both
the code of Figure 3 and Figure 4 into one file, we can generate a parser to recognize arithmetical
expressions. After compiling, we run it on an example input string such as “echo "x * exp(x)"
by issueing the command:

echo "x * exp(x)" | java ArithmeticalExpression

Since the string “x * exp(x)” is a valid expression according to our grammar, the parser will
silently accept it. If instead we issue the command

echo "exp(x--)" | java ArithmeticalExpression

the parser will produce the error message
line 1:7: unexpected token: -

informing us that our input does not conform to the grammar. In fact, the parser realizes that
after the second dash “-”, there is no way to complete the input that yields a correct arithmetical
expression.

4 Symbolic Differentiation

The preceeding example is rather dull, since nothing is done with the recognized input. In order
to make it more interesting, we will next store, represent and process the recognized expressions
as objects. As a showcase, we will write a symbolic differentiator, i.e. a program that reads an
arithmetical expression, interprets it as a mathematical function and then differentiates it with
respect to the variable x. For example, when given the input “x * exp(x)” the program will
produce the output

1 * exp(x) + x * exp(x).
In order to carry out this plan, we first need to decide how expressions can be represented as
objects. We will develop an abstract class Expr representing arithmetical expressions as objects.
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Figure 6 shows the definition of this class. An Expr is either a Sum or a Product or · · ·, so we
represent it by an abstract class Expr with concrete subclasses Sum, Product, · · ·, Logarithm.

1 public abstract class Expr {
2 public abstract Expr diff(Variable x);
3 }

Figure 6: Implementation of the abstract class Expr.

1 class ExpressionParser extends Parser;
2

3 expr returns [Expr r = null]
4 { Expr p; }
5 : r = product
6 ( "+" p = product { r = new Sum(r, p); }
7 | "-" p = product { r = new Difference(r, p); }
8 )*
9 ;

10

11 product returns [Expr r = null]
12 { Expr f; }
13 : r = factor
14 ( "*" f = factor { r = new Product(r, f); }
15 | "/" f = factor { r = new Quotient(r, f); }
16 )*
17 ;
18

19 factor returns [Expr r = null]
20 { Expr a; }
21 : "(" r = expr ")"
22 | "exp" "(" a = expr ")" { r = new Exponential(a); }
23 | "ln" "(" a = expr ")" { r = new Logarithm(a); }
24 | d : DOUBLE { r = new Constant(Double.valueOf(d.getText())); }
25 | id : IDENTIFIER { r = new Variable(id.getText()); }
26 ;

Figure 7: A parser recognizing and constructing expressions.

In order not to be distracted from our main goal we proceed with the specification of the parser
which is shown in Figure 7. The grammar is the same as before, but now the parser constructs
also objects representing the expressions that have been parsed.

1. The rule to recognize expr is now considerable more complex:

(a) In line 3, the string “returns [Expr r = null]” states that every time the parser
sees an expr it will construct an object of type Expr. The variable r will reference this
object. We refer to this variable as result variable. It needs to be initialized, so it is set
to null.
Each grammar rule specifying an object that we want to capture and manipulate, begins
with specifying such a result variable.
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(b) In line 4, the string “{ Expr p; }” declares p as a local variable of this rule.
As before, an expr is specified as a product folllowed by any number of procucts that
are either preceded by an operator “+” or by an operator “-”. However, the grammar
rules are now enriched with variable assignments and semantic actions.

(c) In line 5, the result variable r is initialized to the expression that is constructed when
the first product is seen.

(d) In line 6 the assignment
p = product

sets the local variable p to the object that is constructed when the accompanying
product is parsed. At the end of this line, the action

{ r = new Sum(r, p); }
specifies that the result variable is updated by constructing a new object of class Sum
using the original value of the result variable r as first summand and the value of the
local variable p as the second summand.
The next line deals in the same way with differences, and the remaining code similarly
specifies the non-terminals product and factor.

(e) Line 24 shows how tokens are dealt with. First, the string
d: DOUBLE

declares d to represent a token forming a floating point number. Then, the action
{ r = new Constant(Double.valueOf(d.getText())); }

extracts the string attached to this token, turns it into an object of type Double, which
is then used to construct an object of type Constant. Finally, the result variable r is
set to this object.
Note that with tokens the syntax for extracting the value is different from the syntax
used for non-terminals. For non-terminals it is

var = non-terminal

while for tokens Antlr uses the following syntax:
var : token

1 public class Symbolic {
2 public static void main(String args[]) throws Exception {
3 ExpressionLexer lexer = new ExpressionLexer(System.in);
4 ExpressionParser parser = new ExpressionParser(lexer);
5 try {
6 Expr expr = parser.expr();
7 Variable x = new Variable("x");
8 Expr dExpr = expr.diff(x);
9 System.out.println("d (" + expr + ") / dx = " + dExpr);

10 } catch (Exception e) {}
11 }
12 }

Figure 8: A driver program for the parser.

The scanner can be used unchanged from the previous section. All that is missing now is a driver
for the parser. Figure 8 shows the implementation of class Symbolic. The method main() reads
and parses an arithmetical expression expr and then calls the method diff() for this expression.
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This method returns the expression dExpr representing the result of differentiating expr with
respect to x.

In order to make this tutorial self contained we proceed to discuss the implementation of the
classes derived from Expr. These classes shown in the figures 9, 10, 11, 12, 13, 14, 15, and 16 on
the following pages. Figure 9 shows the implementation of Constant which is used to represent
constant functions. These can be represented by their fixed outcome, which we store in the member
variable mValue. Since

d c
dx

= 0

for any constant c, the method diff() in class Constant returns the constant zero.

1 public class Constant extends Expr {
2 Double mValue;
3

4 public Constant(Double value) { mValue = value; }
5

6 // d c
dx

= 0
7 public Constant diff(Variable x) { return new Constant(0.0); }
8

9 public String toString() { return mValue.toString(); }
10 }

Figure 9: The class Constant.

Figure 10 shows the implementation of class Variable. A variable is fully specified by its name,
which is therefore stored in the member variable mName. When differentiating a variable y with
respect to another variable x, there are two cases: If x and y are identical, the result is 1, otherwise
0.

1 public class Variable extends Expr {
2 String mName;
3

4 public Variable(String name) { mName = name; }
5

6 public Constant diff(Variable x) {
7 if (mName.equals(x.mName)) {
8 // d x

dx
= 1

9 return new Constant(1.0);
10 }
11 // x 6= y → d y

dx
= 0

12 return new Constant(0.0);
13 }
14

15 public String toString() { return mName; }
16 }

Figure 10: The class Variable.

Figure 11 shows the implementation of Sum. The member variable mLhs and mRhs store the
summands, so that objects of this class represent the sum

mLhs + mRhs.
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In order to differentiate a sum, we use the familiar rule:
d
dx

(
u + v

)
= d u

dx
+ d v

dx
.

It is easy to see that the method diff() of class Sum constructs this expression.

1 public class Sum extends Expr {
2 Expr mLhs, mRhs;
3

4 public Sum(Expr lhs, Expr rhs) {
5 mLhs = lhs;
6 mRhs = rhs;
7 }
8

9 // d
dx

(u + v) = d u
dx

+ d v
dx

10 public Sum diff(Variable x) {
11 return new Sum(mLhs.diff(x), mRhs.diff(x));
12 }
13

14 public String toString() {
15 return mLhs.toString() + " + " + mRhs.toString();
16 }
17 }

Figure 11: The class Sum.

The remaining classes are quite similar to the class Sum:

1. The class Diff in Figure 12 implements the rule d
dx

(
u− v

)
= d u

dx
− d v

dx
.

2. The class Product in Figure 13 implements the rule d
dx

(
u ∗ v

)
= d u

dx
∗ v + u ∗ d v

dx
.

3. The class Quotient in Figure 14 implements the rule d
dx

(
u/v

)
=

d u
dx ∗ v − u ∗ d v

dx

v ∗ v
.

4. The class Exponential in Figure 15 implements the rule d
dx

exp(u) = d u
dx

∗ exp(u).

5. The class Logarithm in Figure 16 implements the rule d
dx

ln(u) =
d
dxu

u
. c

5 Conclusion

Antlr provides many more features and options. For those interested, the web site www.antlr.org
gives pointers to several articles describing additional featuers. Furthermore, the software distri-
bution contains an extensive manual [PLS05] which is also available online.
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1 public class Difference extends Expr {
2 Expr mLhs, mRhs;
3

4 public Difference(Expr lhs, Expr rhs) {
5 mLhs = lhs;
6 mRhs = rhs;
7 }
8

9 // d
dx

(u− v) = d u
dx

− d v
dx

10 public Difference diff(Variable x) {
11 return new Difference(mLhs.diff(x), mRhs.diff(x));
12 }
13

14 public String toString() {
15 return mLhs.toString() + " - (" + mRhs.toString() + ")";
16 }
17 }

Figure 12: The class Difference.

1 public class Product extends Expr {
2 Expr mLhs, mRhs;
3

4 public Product(Expr lhs, Expr rhs) {
5 mLhs = lhs;
6 mRhs = rhs;
7 }
8

9 // d
dx

(u/v) = d u
dx

∗ v + u ∗ d v
dx

10 public Sum diff(Variable x) {
11 return new Sum(new Product(mLhs.diff(x), mRhs),
12 new Product(mLhs, mRhs.diff(x)));
13 }
14

15 public String toString() {
16 return "(" + mLhs.toString() + ") * (" + mRhs.toString() + ")";
17 }
18 }

Figure 13: The class Product.
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1 public class Quotient extends Expr {
2 Expr mLhs, mRhs;
3

4 public Quotient(Expr lhs, Expr rhs) {
5 mLhs = lhs;
6 mRhs = rhs;
7 }
8

9 public Expr getRhs() { return mRhs; }
10

11 //
d

dx
(u/v) =

d u
dx ∗ v − u ∗ d v

dx

v ∗ v
12 public Quotient diff(Variable x) {
13 return new
14 Quotient(new Difference(new Product(mLhs.diff(x), mRhs),
15 new Product(mLhs, mRhs.diff(x))),
16 new Product(mRhs, mRhs));
17 }
18

19 public String toString() {
20 return "(" + mLhs.toString() + ") / (" + mRhs.toString() + ")";
21 }
22 }

Figure 14: The class Quotient.

1 public class Exponential extends Expr {
2 Expr mArg;
3

4 public Exponential(Expr arg) { mArg = arg; }
5

6 // d
dx

exp(u) = d u
dx

∗ exp(u)
7 public Product diff(Variable x) {
8 return new Product(mArg.diff(x), this);
9 }

10

11 public String toString() { return "exp(" + mArg + ")"; }
12 }

Figure 15: The class Exponential.
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1 public class Logarithm extends Expr {
2 Expr mArg;
3

4 public Logarithm(Expr arg) { mArg = arg; }
5

6 //
d

dx
ln(u) =

d
dxu

u
7 public Quotient diff(Variable x) {
8 return new Quotient(mArg.diff(x), mArg);
9 }

10

11 public String toString() { return "ln(" + mArg + ")"; }
12 }

Figure 16: The class Logarithm.
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